What can we do with XML?

6 real and imagined use cases

SGML/XML Finland ‘98
XML support in browsers

• Can be viewed (like HTML)
• Can be manipulated by applets (like dynamic HTML) with the DOM
• The DOM will be reachable from applets, JavaScript and VBScript
XML server-side

• Many tools exist already to
 – parse XML
 – convert to or from XML
 – generate XML
 – build XML tools
 – store XML in databases
 – import from XML into databases
 – ...

What is new with XML?

• From an SGML perspective:
 – simplicity (AElfred: 23kB, SP: 1.1 MB)
 – wide tool availability
 – widespread understanding and adoption
 – web support
 – many related standards
 • important: validation and parsing are now separate!
 – tool integration
What is new with XML?

• From a web perspective:
 – reliability
 – structured information on the client side
 – more powerful means of structuring information on the server side
 – a standardized basis for exchange formats
 – more advanced linking and location
Using SGML in your tools

• C/C++: Some APIs, but requires large modules
• OmniMark/Balise: not full-featured languages
• Python/Perl/tcl/Lisp: Must read pre-parsed ESIS
• Java: JNI interface to SP
• Eiffel, Sather, Beta, Smalltalk, Delphi…: No products known to me
Using XML in your tools

- C/C++: Several *small* modules
- Java: Lots of parsers, two standard APIs
- Perl: Parser as module, two APIs
- Python: Module and pure parsers, two standard APIs
- tcl: Module and pure parsers, one standard API
- Delphi: Parser component available
- Others: Nothing yet (except Ruby)
So,
what can we do with all this?
Keeping software indexes
up to date
The problem

- Too many products in software indexes for maintainers to check them all for updates
- Too many indexes for developers to keep track of their registrations
- Maintainers need a way to automatically discover new releases and address changes
- Developers need a way of easily telling all interested maintainers about new releases
The solution

- Product home pages already hold all the version and address information needed
- Encoding this information in XML makes the information accessible to software
- XSA lets developers concisely describe all their products in a single file
An XSA document

<xsa>
 <vendor>
 <name>James Clark</name>
 <email>jjc@jclark.com</email>
 <url>http://www.jclark.com/</url>
 </vendor>

 <product id="SP">
 <name>SP</name>
 <version>1.3</version>
 <last-release>19980312</last-release>
 <info-url>http://www.jclark.com/sp.html</info-url>
 <changes>These are the changes since version 1.2:
 ...
Using XSA: Developers

- Write XSA document
- Publish it on the web and make the URL known
- Update it whenever something changes
Using XSA: Maintainers

• The XSA document can be monitored by clients that poll the document

• This allows clients to detect:
 – new versions
 – new products
 – address changes (email, home pages etc)
Why is this good?

• For developers:
 – a single file stores all the information needed
 – easy updates: just edit the XSA document

• For list maintainers:
 – a list of URLs and the software is all that is needed
 – checking can be 100% automated
XSA software

- A CGI wizard for making XSA documents
- A validation kit for validating them
- A client kit for monitoring them
 - includes an API for developing custom clients
The future

• XSA will extract its data directly from product home pages (in XML)

• This will avoid duplicating information, but will require namespaces or architectural forms

• Software descriptions may be linked in, to provide searching
What’s new with XSA?

• The ability for software to automatically extract information from web documents and use it

• This is a very important application area that is likely to become much more important with time
Similar systems

- Automatic repeats of news headlines from news sites
- Search sites for a collection of related shopping sites and other catalog sites
- The ICE standard attempts to enable these kinds of things
Why not SGML?

• None of SGMLs extra features are needed
• SGML parsers are not truly platform-independent, making toolkit deployment difficult
• SGML will not be supported on the web, ruling out the more advanced solution
Tax forms in XML

Control information
in XML
Background

• Every year all adult Norwegians submit a tax form with financial information used to calculate the amount of tax to be paid
• Processing such amounts of paper requires enormous resources
• A project to allow these forms to be submitted electronically has been started
Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.

Text forms in many formats will be submitted to the centers and then processed and passed on to the tax dept.
One way of using XML

- The most obvious way to use XML in this project: store the form data in XML
- This allows using a single submission format that is easy to parse, validate and generate
- The same format can then be used for delivery to the tax department
Another way

• Tax laws change almost annually, and the forms must follow them

• This requires modifications to:
 – the validation software
 – the form input software for all platforms and submission methods

• Modifying source code is expensive...
Solution

• Store the form fields and their relationships as XML:
 – field 1 is ‘Name’, field 2 is...
 – field 15 is the sum of fields 11-14
 – the value of field 17 should be 0 or larger than 15’000,-
 – if field 18 is ‘yes’, fields 19-22 must be filled in
 – ...
Improvements

• This allows:
 – validation software to be generalized, so that it uses the XML document to validate form contents
 – generalization of input software, to display forms as described by the document and also to do validation before submission
What’s new here?

• The idea of using XML documents to define custom validation requirements
• The idea of letting the same XML document control GUI generation
• In other words: to let markup customize or control applications
Why not SGML?

• Again: extra SGML features not needed
• SGML parsers are large, and not available in all languages
• Using full SGML in an applet is not possible
• In general: SGML software is hard to integrate
Recipe Markup Language

An advanced web site
Recipe Markup Language

• Fictional markup language for recipes with:
 – metadata (complexity, time to prepare, country of origin, kind of dish …)
 – ingredients (amounts and alternatives)
 – steps to prepare (with alternatives for ingredients and tools)
The website

• Lets users find and view recipes
• Recipes can be searched for, using metadata:
 – give me an Italian soup that’s easy to make in no more than 30 minutes...
• With nutritional and price databases:
 – ...and costs less than 50 FIM and has less than 500 calories
Personalized service

• With registered users:
 – menu generation based on preferences (price, complexity, tastes, nutritional value…)
 – shopping list generation based on the menus and preferences (shopping frequency, refrigerator size)
Customized display

- A Java applet could display the recipe
- The user could fill in
 - ingredient alternatives
 - equipment alternatives
 - skill level
- The applet could update nutritional values, preparation times and recipe text accordingly
Cooking assistance

• During cooking the applet could
 – leave out irrelevant information
 – show only the current step
 – warn about things that need to be done, such as
 • pre-heating
 • steps that need to be started soon
 • things that have been heated long enough
Science fiction

• In the future, most kitchen appliances are likely to have CPUs and IP-addresses
• The Java applet in your web browser could then actually monitor your cooking
• You could also search for recipes that could be made with the ingredients in your refrigerator without typing them in
Making money

• Selling access to
 – the personalized service
 – the display applet
• Selling the recipes
 – as a book
 – on CD-ROM
• Selling targeted advertisements
Why is this interesting?

• A general example of the services that become possible with structured information
• Similar things can likely be done with other kinds of structured information
• Not possible with a plain RDBMS solution
Genealogical data in XML

XML as an exchange format
The situation today

• Genealogical research is a common hobby
• Lots of programs exist to help researchers
• Data can be exchanged using the GEDCOM exchange format
• Web integration with GEDCOM is very poor
GedML

- XML DTD developed by Mike Kay of ICL
- Software exists to convert to and from GEDCOM and CSV files
- Not much more has happened, yet
- Note that some of the things I describe in the following are not possible because of things inherited from GEDCOM
Supporting GedML

• All programs that can accept and export GedML can exchange data

• Developing this is easy because:
 – XML parsers already exist
 – XML is easy to generate
 – The GedML DTD provides a formal and useful specification of the format
Using GedML

- GedML can be published on the web and
 - read with a style sheet
 - navigated with an applet
 - branches can be imported into your own data
 - searched by GedML search engines
Going further

• Packages could be developed to turn a GedML document into a genealogical part of a site with
 – site map
 – search engine
 – family trees
 – ...

Even further

• Online GedML files could use XLink to link into other GedML files
• XPointers could be used to pinpoint individuals and families within other files
• This could be used by different researchers to cooperate on different family branches
• Browsing software could follow the links
Searching

- Standard search engines could be used to search for GedML files containing certain strings
- Search engines could specialize in genealogical searches and do web-wide searches
XML as an exchange format

• Better than SGML because
 – it’s simpler
 – there are more tools

• Better than binary formats because
 – it’s simpler
 – it’s human-readable
 – can be modified in a text editor
 – easier to parse
XML as an exchange format

- XML provides an entire infrastructure for:
 - parsing
 - validation
 - syntax description
 - display
 - object models
 - linking and location
 - web deployment
MathML

Math on the web
MathML

• Browsers had no capabilities for showing mathematical formulae except as images
• To solve this the W3C has developed an XML DTD for representing formulae: MathML
• MathML can be edited with special editors and manipulated in Java applets
Using MathML

• The most obvious way: displaying math
• Exchanging of formulae between math software packages such as
 – engineering systems
 – equation editors
 – web pages
 – educational software
Drag and drop

• Engineers could drag formulae from technical specs in web pages and into their engineering software

• Students could drag formulae from educational web pages and into software packages to analyze them, modify them and display graphs
Using MathML II

• An API already exists for developing applets that work with MathML in browsers
• This can be used to
 – display MathML
 – edit MathML
 – use MathML in calculations or to display graphs
Linking

• Applets can be use XPointers to locate formulae to display in some way
• Scientific papers and educational texts can link directly to
 – the proofs or derivations of the formulae they use
 – alternate forms of the formulae
 – ...

Current MathML support

- IBM Techexplorer, tech document viewer
- MathType, equation editor used in MS Office, WordPerfect, ClarisWorks and Nisus Writer (in version 4.0)
- Maple, engineering computing system
- Mathematica, typesetting system
- Publicon, publishing system (not yet)
What’s interesting about this?

• An example of a general format that can be used for several different things:
 – access to structured data in browsers
 – exchange
 – display/publishing

• More formats of this kind will very likely be developed in the future
Why not SGML?

• MathML actually started as an SGML project, but since XML will be supported by browsers, SGML was dropped

• Again: simplicity and tool availability
Site maps

New ways of browsing
Browsing today

• Most commercial sites carry lots of navigational links on every web page
• Despite this they are often hard to navigate
• Searches often return results like:
 – slides 23, 35 and 54 of a presentation
 – sections 2.1, 3.4, 4.1 of a paper
 – ...

08.Oct.98
Lars Marius Garshol, STEP Infotek A/S
Resource Description Framework

• A framework for making metadata languages with XML syntax
• Not a finished W3C recommendation, yet
• The framework can be adapted to many different purposes, such as
 – describing software
 – site maps
 – ...

Site maps in RDF

• This could be a single XML document that described
 – each page on a site
 – the relationships between the pages
 – the site as a whole
 – the relationships to other sites
Searching with site maps

• Search engines could use them to direct searches
 – display the context for a hit (what kind of document, links to other pages on the site)
 – group hits that are logically within a single resource
 – inform about related sites
Navigation with site maps

• With a site map the browser interface could be much improved

• Instead of the simple backwards/forwards model, the browser window could be split in two:
 – site map with ‘you are here’
 – the page itself
Consequences

• Web navigation could be much simpler
• Web site maintainance could be much easier
• Web page layout could become much more readable and user-friendly
• Browsers as we know them might change completely
Conclusion

• This is another example of the new possibilities that open up with structured information on the web

• Why not SGML: not supported on the web and not needed
Conclusion: Prelude

How can XML be both simpler than and more powerful than SGML?
“Worse is better”

• In 1991 Richard P. Gabriel wrote an analysis of the current situation for the programming language Lisp

• In it he described two design philosophies:
 – “The right thing”
 – “Worse is better”
Two design philosophies

• “The right thing”:
 – correctness and completeness over simplicity
 – simplicity of interface over implementation

• “Worse is better”:
 – simplicity of implementation above all, especially completeness
Examples

The right thing
- Common Lisp/Scheme
- X.25 + X.400
- Xanadu
- SGML
- HyTime
- DSSSL

Worse is better
- C/C++
- TCP/IP + SMTP
- WWW
- XML
- XLink
- CSS2/XSL
Consequences

• More people understand XML
• More XML software
• XML software requires less resources
• More XML standards
• More XML publicity
• XML will be extended with time
Conclusion

What can we do with XML?
What does it do better than SGML?
What is XML?

• A standard
• A way of thinking
• An infrastructure of existing
 – tools
 – professionals
 – techniques
 – supporting standards
Impact on SGML

• Wider adoption
• More publicity
• New ways of using markup
• New schema standards
• New usage areas
Impact on the web

• Simplifies data exchange
• Enables entirely new kinds of applications
• “Gives Java something to do”
• A cornerstone of the new web architecture
• Simplifies site maintainance
New uses for XML

- XML as configuration and data format for applications
- XML as simple exchange format
- XML as basis for automatic information extraction from web pages
- XML as structured data in browsers, enabling more advanced web services
Is SGML dying?

• There are more SGML documents than HTML documents…
• Organizations like Boeing, Microsoft, Sybase, Mobil, US Armed Forces etc have built their information systems on SGML
• SGML can do things XML cannot
• In a word: no
How to use SGML with XML

• Publishing XML from SGML is easier than publishing HTML from SGML
• James Clark’s SX does this automatically with no configuration at all
• HyTime, TEI Extended Pointers etc will still need to be converted
• Conversion can do this
The roles of XML and SGML

XML
- Web publishing
- Exchange
- Simple in-house use
- Configuration files
- Data serialization
- Data formats

SGML
- Complex in-house use
- Long-term storage
- Hand-edited information
The next generation will do things with SGML that we can’t even imagine yet – it is that versatile.

William W. Davis, chairman ANSI SGML Task Group, April ‘95